1,961 research outputs found

    Quantum Phase Transition from a Spin-liquid State to a Spin-glass State in the Quasi-1D Spin-1 System Sr1-xCaxNi2V2O8

    Full text link
    We report a quantum phase transition from a spin-liquid state to a spin-glass state in the quasi-one dimensional (1D) spin-1 system Sr1-xCaxNi2V2O8, induced by a small amount of Ca-substitution at Sr site. The ground state of the parent compound (x = 0) is found to be a spin-liquid type with a finite energy gap of 26.6 K between singlet ground state and triplet excited state. Both dc-magnetization and ac-susceptibility studies on the highest Ca-substituted compound (x = 0.05) indicate a spin-glass type magnetic ground state. With increasing Ca-concentration, the spin-glass ordering temperature increases from 4.5 K (for the x = 0.015 compound) to 6.25 K (for the x = 0.05 compound). The observed results are discussed in the light of the earlier experimental reports and the theoretical predictions for a quasi-1D spin-1 system.Comment: 26 pages, 8 figures, 3 table

    Long-range and short-range magnetic correlations, and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14

    Full text link
    Spin-spin correlations and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14 have been investigated by powder neutron diffraction. The present study reveals a 3D long-range magnetic ordering below 16 K where the magnetic structure consists of ferromagnetic trimers that are coupled ferromagnetically along the spin-chain. The moment components along the a and c axes arrange antiferromagnetically. Our study establishes that the uncompensated moment components along the b axis result in a net magnetization per unit cell. The magnetic structure, determined in the present study, is in agreement with the results of recent first principles calculation; however, it is in contrast to a fascinating experimental prediction of ferrimagnetic ordering based on the periodicity of the exchange interactions in CaNi3P4O14. Our study also confirms the presence of broad diffuse magnetic scattering, due to 1D short-range spin-spin correlations, over a wide temperature range below ~50 K down to a temperature well below the Tc. Total neutron scattering analysis by the RMC method reveals that the dominating spin-spin correlation above Tc is ferromagnetic and along the b axis. The nearest neighbour spin-spin correlations along the a and c axes are found to be weakly antiferromagnetic. The nature of the trimer spin structure of the short-range state is similar to that of the 3D long-range ordered state. The present investigation of microscopic nature of the magnetic ground state also explains the condition required for the 1/3 magnetization plateau to be observed in the trimer spin-chains. In spite of the S=1 trimer chain system, the present compound CaNi3P4O14 is found to be a good realization of 3D magnet below the Tc=16 K with full ordered moment values of ~2 mu_B/Ni2+ (1.98 and 1.96 mu_B/Ni2+ for two Ni sites, respectively) at 1.5 K.Comment: 10 pages, 8 figure

    Alkoxyallene‐Based LANCA Three‐Component Synthesis of 1,2‐Diketones, Quinoxalines, and Unique Isoindenone Dimers and a Computational Study of the Isoindenone Dimerization

    Get PDF
    A series of ÎČ‐alkoxy‐ÎČ‐ketoenamides was prepared by the well‐established LANCA three‐component reaction of lithiated 1‐(2‐trimethylsilylethoxy)‐substituted allenes, nitriles, and α,ÎČ‐unsaturated carboxylic acids. The α‐tert‐butyl‐substituted compounds were smoothly converted into the expected 1,2‐diketones by treatment with trifluoroacetic acid. A subsequent condensation of the 1,2‐diketones with o‐phenylenediamine provided the desired highly substituted quinoxalines in good overall yield. Surprisingly, the α‐phenyl‐substituted ÎČ‐alkoxy‐ÎČ‐ketoenamides investigated afford not only the expected 1,2‐diketones, but also pentacyclic compounds with an anti‐tricyclo[4.2.1.12,5]deca‐3,7‐diene‐9,10‐dione core. These interesting products are very likely the result of an isoindenone dimerization which was mechanistically studied with the support of DFT calculations. Under the strongly acidic reaction conditions, a stepwise reaction is likely leading to a protonated isoindenone as reactive intermediate. It may first form a van der Waals complex with a neutral isoindenone before the two regio‐ and diastereoselective ring forming steps occur. Interestingly, two neutral or two protonated isoindenones are also predicted to dimerize giving the observed pentacyclic product

    Investigation of the magnetic structure and crystal field states of pyrochlore antiferromagnet Nd2Zr2O7

    Get PDF
    We present synchrotron x-ray diffraction, neutron powder diffraction and time-of-flight inelastic neutron scattering measurements on the rare earth pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and cystal field states. The structural characterization by high-resolution synchrotron x-ray diffraction confirms that the pyrochlore structure has no detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals long range all-in/all-out antiferromagnetic order below T_N ~ 0.4 K with propagation vector k = (0 0 0) and an ordered moment of 1.26(2) \mu_B/Nd at 0.1 K. The ordered moment is much smaller than the estimated moment of 2.65 \mu_B/Nd for the local Ising ground state of Nd3+ (J=9/2) suggesting that the ordering is partially suppressed by quantum fluctuations. The strong Ising anisotropy is further confirmed by the inelastic neutron scattering data which reveals a well-isolated dipolar-octupolar type Kramers doublet ground state. The crystal field level scheme and ground state wavefunction have been determined.Comment: 12 pages, 15 figures, 2 table

    Field Induced Magnetic Ordering and Single-ion Anisotropy in the Quasi-1D Haldane Chain Compound SrNi2V2O8: A Single Crystal investigation

    Get PDF
    Field-induced magnetic ordering in the Haldane chain compound SrNi2_{2}V2_{2}O8_{8} and effect of anisotropy have been investigated using single crystals. Static susceptibility, inelastic neutron scattering, high-field magnetization, and low temperature heat-capacity studies confirm a non-magnetic spin-singlet ground state and a gap between the singlet ground state and triplet excited states. The intra-chain exchange interaction is estimated to be J∌8.9±J \sim 8.9{\pm}0.1 meV. Splitting of the dispersions into two modes with minimum energies 1.57 and 2.58 meV confirms the existence of single-ion anisotropy D(Sz)2D(S^z){^2}. The value of {\it D} is estimated to be −0.51±0.01-0.51{\pm}0.01 meV and the easy axis is found to be along the crystallographic {\it c}-axis. Field-induced magnetic ordering has been found with two critical fields [ÎŒ0Hc⊄c=12.0±\mu_0H_c^{\perp c} = 12.0{\pm}0.2 T and ÎŒ0Hc∄c=20.8±\mu_0H_c^{\parallel c} = 20.8{\pm}0.5 T at 4.2 K]. Field-induced three-dimensional magnetic ordering above the critical fields is evident from the heat-capacity, susceptibility, and high-field magnetization study. The Phase diagram in the {\it H-T} plane has been obtained from the high-field magnetization. The observed results are discussed in the light of theoretical predictions as well as earlier experimental reports on Haldane chain compounds

    Spinon Confinement in the One-Dimensional Ising-Like Antiferromagnet SrCo2V2O8

    Get PDF
    For quasi-one dimensional quantum spin systems theory predicts the occurrence of a confinement of spinon excitation due to interchain couplings. Here we investigate the system SrCo2V2O8, a realization of the weakly-coupled Ising-like XXZ antiferromagnetic chains, by terahertz spectroscopy with and without applied magnetic field. At low temperatures a series of excitations is observed, which split in a Zeeman-like fashion in an applied magnetic field. These magnetic excitations are identified as the theoretically predicted spinon-pair excitations. Using a one dimensional Schr\"odinger equation with a linear confinement potential imposed by weak interchain couplings, the hierarchy of the confined spinons can be fully described.Comment: 4 pages, 3 figure

    Collaborative Epistemic Discourse in Classroom Information Seeking Tasks

    Get PDF
    We discuss the relationship between information seeking, and epistemic beliefs – beliefs about the source, structure, complexity, and stability of knowledge – in the context of collaborative information seeking discourses. We further suggest that both information seeking, and epistemic cognition research agendas have suffered from a lack of attention to how information seeking as a collaborative activity is mediated by talk between partners – an area we seek to address in this paper. A small-scale observational study using sociocultural discourse analysis was conducted with eight eleven year old pupils who carried out search engine tasks in small groups. Qualitative and quantitative analysis were performed on their discussions using sociocultural discourse analytic techniques. Extracts of the dialogue are reported, informed by concordance analysis and quantitative coding of dialogue duration. We find that 1) discourse which could be characterised as ‘epistemic’ is identifiable in student talk, 2) that it is possible to identify talk which is more or less productive, and 3) that epistemic talk is associated with positive learning outcomes
    • 

    corecore